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• Brief company introduction
• Motivation for laser cladding of brake disks
• Process characteristics
• Cladding microstructure and properties

- Phase composition, crystallite size and orientation
- Microhardness
- Crack formation and propagation

• Influence of feedstock properties
- Stainless steel matrix
- Carbide reinforcement

• Influence of particle speed and particle density distribution
• Influence of welding strategy



3

founded in 1983

Owners and CEOs:
Dr.-Ing. Klaus Nassenstein
Dr.-Ing. Konstantin von Niessen

GTV company

> 30 Mio. € turnover

2 locations
D-Luckenbach

CN-Beijing

94 employees
10 in RnD
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Motivation for coating of brake disks

• Aesthetics

• Corrosion resistant friction ring surface

• Stable friction coefficient despite mostly regenerative braking

• Reduced particle emission

• Non-hazardous wear debris
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Motivation for laser cladding of brake disks

• Metallurgical bonding between substrate and coating

• Gas tight claddings

• Low heat input

• Low dilution with base material

• Limited distortion

• High deposition efficiency

• High deposition rate possible

• High reproducibility
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Process characteristics

• 6-stream powder nozzle
tailored particle density distribution and

tailored speed of powder components

• Up to 22 kW laser power, 300 g/min

powder feed rate at 90% DE, 400 m/min

cladding speed, overlap > 90%

• 80 - 500 µm layer thickness

• Stainless steels + NbC / TiC / W2C/WC
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Laser cladding process
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Cladding properties - microstructure 

• Directional solidification

• Partially epitaxial crystal growth through

bead and layer boundaries

• Multi-layer claddings with graded carbide

content possible, advantageous stress state

• Pre-heating permits increased carbide

contents without crack formation
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Cladding properties - microstructure 

• Non-equilibrium phase composition
AISI318LN solidifies basically 100% ferritic

• Carbide reinforcement results in reduced

orientation preference and smaller grain size

• Thermal crack tests cause crack initiation at

surface, cracking starts in substrate before

cracks propagate through base layer without

carbide reinforcement
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Cladding properties - microstructure 

• Tribologically induced heat treatment during thermal crack testing

causes grain coarsening only in grey cast iron substrates and 

stainless steel layers without carbide reinforcement
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Cladding properties - microhardness

• 30 vol.-% NbC and TiC reinforced stainless

steel layers show average microhardness

of 450-700 HV0.3 (std. dev. < 100 HV0.3)  

• 30 vol.-% W2C/WC reinforced stainless

steel layers show individual microhardness

values of 400-2,500 HV0.3 with average of

900-1,400 HV0.3 

AISI 430L - NbC/FeCr

AISI 316L - W2C/WC
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Cladding feedstock development

• NbC cubes, leached

• Avg. diameter ~ 30 µm

• Good feed rate stability

• Good wetting by stainless steel matrices

• Small specific surface area, low dilution

• Crater formation due to Al2O3 contamination

arising from production process

• Limited availability
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Cladding feedstock development

• NbC (/ TiC), sintered & crushed

• Avg. diameter ~ 40 µm

• Limited feed rate stability

• Good wetting by stainless steel matrices

• Large specific surface area, strong dilution

• Dendritic carbide precipitates

• Transfer of cracks caused by crushing

procedure into claddings
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Cladding feedstock development

• TiC/FeCr (/ NbC/FeCr), aggl. & sintered

• Avg. diameter ~ 25 µm, FSSS 1 µm

• Excellent feed rate stability

• Good wetting by stainless steel matrices

• Small specific surface area, low dilution

• Limited cohesion within large composite

particles that are not penetrated by stainless

steel melt
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Cladding feedstock development

• TiC/FeCr, sintered & crushed

• Avg. diameter ~ 40 µm, FSSS 1 µm

• Good feed rate stability

• Good wetting by stainless steel matrices

• Large specific surface area, low dilution

• High cohesion even within large composite

particles that are not penetrated by stainless

steel melt
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Cladding feedstock development

• TiC (/ W2C/WC), plasma spheroidized

• Avg. diameter ~ 40 µm

• Excellent feed rate stability

• Good wetting by stainless steel matrices

• Small specific surface area, low dilution

• Actually still limited availability
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Cladding feedstock development

production route feed stability dilution in 
matrix

carbide crack 
resistance

cladding
strength availability

leached + + + + --

sintered and crushed - - - 0 +(+)

agglomerated and 
sintered composite ++ + ++ 0 +(+)

sintered and crushed
composite + + ++ + +(+)

plasma spheroidized ++ + + + -



18

Particle density distribution influence

• Control of local particle density permits

influence on local laser interaction with

substrate / previous cladding layer

surface
28/29/27/27 g/min  stainless steel
17/17 g/min            TiC/FeCr 70/30

32/32/24/23 g/min  stainless steel
21/13 g/min            TiC/FeCr 70/30
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Particle speed influence

• Heat transfer to carbide particles on their

way into the melt pool can be tailored by

particle speed / dwell time inside the

laser beam

• Flattening degree and degree of carbide

dissolution in stainless steel melts

depends on heat transfer to inflight

particles

Carrier gas Ar, FTCs 2x 4 l/min

Carrier gas Ar, FTCs 2x 6 l/min
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Influence of welding strategy

• Distortion depends on brake disk design; 
deposition of 500 µm thick cladding on one side can cause

more than 800 µm distortion

• Small and composite brake disks

advantageous

• Welding strategy permits minimizing

distortion after cladding of both sides

• Distortion increases with total heat transfer

welding
strategy

avg. distortion
towards CO

CI (io, oi, io)
CO (io, oi, io) 100,0%

CI (oi, io, oi)
CO (oi, io, oi) 95,8%

CO (oi, io, oi)
CI (oi, io, oi) 32,8%

CO (io, oi, io)
CI (io, oi, io) 27,8%

CO (oi, io, oi)
CI (io, oi, io) 17,0%

CO (oi, io, oi)
CI (oi, oi, io) 9,3%

CO (oi, io, oi)
CI (io, io, io) -12,8%
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Influence of residual stresses before cladding

• Distortion after cladding depends on residual stress state before

cladding process

• Cladding of disks from two raw disk batches in random order can

result in distinguishable distortion state; e.g.:
Batch 1: range 22 - 46 µm

Batch 2: range 47 - 57 µm

• Stress relief annealing prior to pre-machining necessary / cost

advantageous? 
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Influence of thermal history

• Surface appearance after AK Master dyno test
cladding of CI, cooling to RT, cladding of CO; 430L + 430L / TiC 

CI CO
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Influence of thermal history

• Surface appearance after AK Master dyno test
cladding of CI, cladding of CO without interim cooling; 430L + 430L / TiC 

CI CO
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Influence of thermal history

• Surface appearance after AK Master dyno test
cladding of CO, cladding of CI without interim cooling; 430L + 430L / TiC 

CI CO
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Summary

• High productivity laser cladding processes available for coating of

grey cast iron brake rotors

• Ongoing development of optimized feedstock for optimal tribological

performance and corrosion protective function of claddings

• Comprehensive optimization of process conditions needs to include

powder particle density distribution, speed of feedstock components

and welding strategy



Thank you very much for your attention!

www.gtv-mbh.com
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Process monitoring and control tools

• Disk type feeders permit fast change of

powder feed rates for individual layers

• Scale powder feeders permit detection and 

compensation of abrupt and gradual 

change of powder feed rate

• Monitoring of disk groove filling level based

on laser triangulation possible 

disk rotation speed [rpm]
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Process monitoring and control tools

• Offline 3D powder stream analyses

based on sheet laser illumination of

inflight particles

• Evaluation of powder feed line and 

nozzle condition

• Automatic determination of

characteristic factors
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Process monitoring and control tools

• Online powder stream analyses

based on sheet laser illumination of

inflight particles

• Detection of blocked feed lines, 

pulsing powder flow and change

of powder stream geometry

• Plasma formation over melt pool 

requires lateral camera images
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Process monitoring and control tools

• Online layer thickness monitoring

based on laser triangulation sensor

(7 µm accuracy)

• Difference of plain distances in 

front of and behind melt pool

• Online detection of crater formation

possible
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Process monitoring and control tools

• Optimal cladding of friction ring 

edges based on edge position

detection

• Weighing of discs after deposition

of individual layers

• Offline determination of laser 

power by calorimetry
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• Workpiece specific process and 

feedstock data from all processing

steps combined with evaluation by

(non-)destructive testing permits:
- fine tuning of process limit values for

secure detection of faulty workpieces

- fine tuning of feedstock specification

- adaptation of process parameters

depending on feedstock properties

Continuous process improvement
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